Celecoxib impairs heart development via inhibiting cyclooxygenase-2 activity in zebrafish embryos.

نویسندگان

  • Dao-Jie Xu
  • Ji-Wen Bu
  • Shan-Ye Gu
  • Yi-Meng Xia
  • Jiu-Lin Du
  • Ying-Wei Wang
چکیده

BACKGROUND Celecoxib, a cyclooxygenase-2 inhibitor, is a commonly ingested drug that is used by some women during pregnancy. Although use of celecoxib is associated with increased cardiovascular risk in adults, its effect on fetal heart development remains unknown. METHODS Zebrafish embryos were exposed to celecoxib or other relevant drugs from tailbud stage (10.3-72 h postfertilization). Heart looping and valve formation were examined at different developmental stages by in vivo confocal imaging. In addition, whole mount in situ hybridization was performed to examine drug-induced changes in the expression of heart valve marker genes. RESULTS In celecoxib-treated zebrafish embryos, the heart failed to undergo normal looping and the heart valve was absent, causing serious blood regurgitation. Furthermore, celecoxib treatment disturbed the restricted expression of the heart valve markers bone morphogenetic protein 4 and versican-but not the cardiac chamber markers cardiac myosin light chain 2, ventricular myosin heavy chain, and atrial myosin heavy chain. These defects in heart development were markedly relieved by treatment with the cyclooxygenase-2 downstream product prostaglandin E2, and mimicked by the cyclooxygenase-2 inhibitor NS398, implying that celecoxib-induced heart defects were caused by the inhibition of cyclooxygenase-2 activity. CONCLUSIONS These findings provide the first in vivo evidence that celecoxib exposure impairs heart development in zebrafish embryos by inhibiting cyclooxygenase-2 activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing and Synthesis of Novel Celecoxib Derivatives with Aminosulfonylmethyl and Azidomethyl Substituents as Selective Cyclooxygenase-2 Inhibitors

Introduction: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are used in treating pathologic conditions such as fever, pain and inflammation by inhibiting cyclooxygenase and consequently prostaglandin production. Recently , the discovery of different isoforms of this enzyme, Cyclooxygenase-1 (COX-1) andCyclooxygense-2 (COX-2), has led to the synthesis and introduction of novel drugs with select...

متن کامل

Designing and Synthesis of Novel Celecoxib Derivatives with Aminosulfonylmethyl and Azidomethyl Substituents as Selective Cyclooxygenase-2 Inhibitors

Introduction: Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are used in treating pathologic conditions such as fever, pain and inflammation by inhibiting cyclooxygenase and consequently prostaglandin production. Recently , the discovery of different isoforms of this enzyme, Cyclooxygenase-1 (COX-1) and Cyclooxygense-2 (COX-2), has led to the synthesis and introduction of novel drugs with selec...

متن کامل

Pharmacological exploitation of an off-target antibacterial effect of the cyclooxygenase-2 inhibitor celecoxib against Francisella tularensis.

Francisella tularensis, a bacterium which causes tularemia in humans, is classified as a CDC category A bioterrorism agent. In this study, we demonstrate that celecoxib, an anti-inflammatory cyclooxygenase-2 inhibitor in clinical use, exhibits activity against a type A strain of F. tularensis (Schu S4), the live vaccine strain of F. tularensis (a type B strain), and F. novicida ("F. tularensis ...

متن کامل

Cyclooxygenase-2 inhibitor enhances the efficacy of a breast cancer vaccine: role of IDO.

We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the...

متن کامل

Protein kinase D2 controls cardiac valve formation in zebrafish by regulating histone deacetylase 5 activity.

BACKGROUND The molecular mechanisms that guide heart valve formation are not well understood. However, elucidation of the genetic basis of congenital heart disease is one of the prerequisites for the development of tissue-engineered heart valves. METHODS AND RESULTS We isolated here a mutation in zebrafish, bungee (bng(jh177)), which selectively perturbs valve formation in the embryonic heart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anesthesiology

دوره 114 2  شماره 

صفحات  -

تاریخ انتشار 2011